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In this paper we present a novel support vector machine (SVM) based framework for
prognosis and diagnosis. We apply the framework to sparse physics data sets, although

the method can easily be extended to other domains. Experiments in applied fields, such
as experimental physics, are often complicated and expensive. As a result, experimen-
talists are unable to conduct as many experiments as they would like, leading to very

unbalanced data sets that can be dense in one dimension and very sparse in others. Our
method predicts the data values along the sparse dimension providing more information
to researchers. Often experiments deviate from expectations due to small misalignments
in initial parameters. It can be challenging to distinguish these outlier experiments from

those where a real underlying process caused the deviation. Our method detects these
outlier experiments. We describe our success at prediction and outlier detection and
discuss implications for future applications.
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1. Introduction

In this paper we describe a powerful new approach to prediction, diagnosis, and

global data-integrative analysis using SVM regression. We demonstrate the power

of our approach by analyzing a high-energy physics environment. Our tool, based

on the SVM technology, is initially applied to velocity data obtained during shock
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physics experiments on tin. However, as our results indicate, the same method can

easily be adapted to many other applied physics problems, including experiments

on different types of metal, under different physical conditions, and even with sig-

nificantly different set-up, leading the way for analysis of other related applications.

Experimental physics, along with many other fields in applied research, uses

experiments, physical tests, and observations to gain insight into various phenomena

as well as to validate hypotheses and models. Shock physics is a field that explores

the response of materials to the extremes of pressure, deformation, and temperature

which are present when shock waves interact with those materials.1 High explosives

(HE) are often used to generate these strong shock waves. Many different diagnostic

approaches have been used to probe these phenomena.2

Because of the energetic nature of the shock wave drive, often a large amount of

experimental equipment is destroyed during the test. Similar to many other applied

sciences, the cost and complexity of repeating a significant number of experiments,

or conducting a systematic study of some physical property, are simply too costly to

conduct to the degree of completeness and detail that researchers desire. As a result,

a data analyst is often left with data sets whose dimensions are highly diverse: a

data set might be very dense in one dimension and sparse in another. Additionally,

high energy released during the experiment contributes noise, quickly increasing

as the equipment degrades. Finally, since each test requires multiple parameters

of the physical system to be fine-tuned, physicists often encounter various data

misalignment issues when attempting to interpret the results.

Our approach utilizes a novel variant of support vector machine learning that

interpolates the shock physics data along the sparse data dimension. The method

supplies physicists with new indirect information that is implicit when traditional

data analysis is used. Moreover, our approach allows for prediction of the physical

measurements under new experimental conditions without repeating a necessary

set of costly experiments. Predictability of the data from the experiments by itself

provides more insight about the underlying physical process. Furthermore, we also

focus on the problem of identifying “outlier” experiments, i.e., those experiments

that for some reason went wrong. Our method can diagnose which experimental

data do not fit with data sets from other “good” experiments. Another important

application of the method is for comparison and integration of the predicted infor-

mation with other kinds of data, including those from simulated models.

In section 2 we further describe the details and tasks of our SVM-based method.

In section 3 we illustrate the method by applying it to a physics example whose

results are evaluated in section 4. Finally, we provide related work and conclude.

2. SVM-Based Prognosis and Diagnosis

2.1. Support vector machines

The Support Vector Machine (SVM) uses supervised learning to estimate a func-

tional input/output relationship from a set of training data. Formally, given the
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training data set of k points {〈xi, yi〉|xi ∈ X, yi ∈ Y, i = 1, . . . , k}, that is indepen-

dently and randomly generated by some unknown function f for each data point, the

Support Vector Machine method finds an approximation of the function, assuming

f is of the form

f(x) = w · φ(x) + b, (1)

where φ is a nonlinear mapping φ : X → H, b ∈ Y , w ∈ H. Here X ⊆ Rn is the

input space, Y ⊆ R is the output space, and H is a high-dimensional feature space.

The coefficients w and b are found by minimizing the regularized risk3

R = C

k
∑

i=1

L(f(xi), yi) + λ ‖ w ‖2 . (2)

This formula shows that regularized risk R consists of an empirical risk, defined via

a loss function, complemented with a regularization term. In this paper we measure

the empirical risk using an ε-intensive loss function4 L defined as

L(f(x), y) =

{

|f(x) − y| − ε, if |f(x) − y| ≥ ε

0, otherwise
.

Minimizing the regularization term, λ ‖ w ‖2, enforces the resulting function to be

as flat as possible, hence controlling how general the function is (which is very crucial

in extremely noisy domains). Constant C in (2) is called a regularization constant or

a capacity factor, and ε is the size of the ε-tube (also called an error-insensitive zone

or an ε-margin). Note that ε determines the accuracy of the regression, namely the

amount by which a point from a training set is allowed to diverge from the regression.

Note also that the support vector machine is a method involving kernels. Recall that

the kernel of an arbitrary function g : X → Y is an equivalence relation on X:

ker(g) = {(x1, x2)|x1, x2 ∈ X, g(x1) = g(x2)} ⊆ X × X.

We can think of a kernel as a nonlinear similarity measure.

Originally, the SVM technique was applied to classification problems, in which

the algorithm finds the maximum-margin hyperplane in the transformed feature

space H that separates the data into two classes. The result of an SVM used for

regression estimation (Support Vector Regression, SVR) is a model that depends

only on a subset of training data, because the loss function used during the modeling

omits the training data points inside the ε-tube (points that are close to the model

prediction).

The SVM approach has several attractive features pointed out by Shawe-Taylor

and Cristianini.5 One of these features is the good generalization performance which

an SVM achieves by using a unique principle of structural risk minimization.6 In

addition, SVM training is equivalent to solving a linearly constrained quadratic

programming problem that has a unique and globally optimal solution, hence there

is no need to worry about local minima. A solution found by SVM depends only on



4 N.A. Sakhanenko, G.F. Luger, H.E. Makaruk, D.B. Holtkamp

a subset of training data points, called support vectors, making the representation

of the solution sparse.

Finally, since the SVM method involves kernels, it allows us to deal with ar-

bitrary large feature spaces without having to compute explicitly the mapping φ

from the data space to the feature space, hence avoiding the need to compute the

product w · φ(x) of Eq.(1). In other words, a linear algorithm that uses only dot

products can be transformed by replacing dot products with a kernel function. The

resulting algorithm becomes non-linear, although it is still linear in the range of the

mapping φ. We do not need to compute φ explicitly, because of the application of

kernels. This algorithm transformation from the linear to non-linear form is known

as a kernel trick.7

2.2. The tasks

In applied fields, such as experimental physics, a data set consists of information

obtained from a number of various tests. Often researchers cannot conduct as many

experiments as necessary to complete a study, due to complexity and cost of these

tests. The first problem we consider in this paper is to predict the measurement

values for missing experiments.

Furthermore, we also focus on experiments whose data recordings were not all

successful. The configuration of the experiments in applied fields is controlled by

multiple parameters whose precise calibration is very crucial for a successful test.

Even a small deviation in any of these parameters as well as in hidden environmen-

tal variables can set the experiment off, making its results less informative. Often

only domain experts with a lot of experience can immediately distinguish between

such “outlier” experiments and tests with “real” physical phenomena. Our method

can provide a diagnostic function to experimentalists detecting the “outlier” exper-

iments and possibly identifying which parameters of the test system went wrong.

The task of increasing the informational output of experimental data is im-

portant, due to the limited number of experiments, their difficult implementation,

and high cost. Researchers, who attempt to explain all the phenomena of these

experiments, can gain more insight by combining the experimental data with our

SVM-based predictions. Moreover, the predicted model can further support and

even improve the understanding of other types of data obtained during the experi-

ment. Another important application of SVM-based data estimations is for compar-

ison with various kinds of numerical experiments (in physics these called hydrocode

models) generated by large programs that simulate various hard or impossible to

perform experiments. Consequently, the model can be incorporated into a data

manifold of the experiment data.

2.3. Equivalent problem

Consider each data point from a given data set as a tuple 〈t1, . . . , tn〉 for some

n > 2, where each ti represents a recorded data value in the ith direction. One can
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see that these data points lie on a surface in the n-dimensional space. Hence the

problem identified in section 2.2 can be transformed into the task of reconstructing

the surface from the given data.

In other words, the problem is to find a regression of one coordinate on the rest

of the coordinates of a sample based on data. Formally, consider n random variables,

T1, . . . , Tn. The problem is to estimate coefficients θ ∈ Θ such that the error

e = T1 − ρ(T2, . . . , Tn; θ) (3)

is small, where ρ is a regression function, that is, ρ : R
n−1×Θ → R, and Θ ⊆ R is a

set of coefficients of the model. Note that variables T2, . . . , Tn are the n− 1 factors

of a regression, and T1 is an observation.

3. The Example: an Application in Experimental Physics

We next illustrate our SVM-based method by applying it to the analysis of surface

velocity data taken from HE shocked tin samples using a laser velocity interfer-

ometer called a VISAR.8,9,10 These experiments have been described elsewhere in

detail.11 For the purposes of this paper, it is sufficient to note that the VISAR data

presented here describe the response of the free surface of the metal coupon to the

shock loading and HE generated shock wave. Physicists analyze the time depen-

dence of the velocity magnitude to obtain information on the yield strength of the

material, and the thickness of the leading damage layer that may separate from the

bulk material during the experiment.

3.1. The experiment

The data were obtained from experiments in which metal samples are dam-

aged/melted during a high explosive detonation with single point ignition. A

schematic view of the experiment setup is shown in figure 1. A cylindrically shaped

metal coupon is positioned on top of a 12.7 mm thick high explosive (HE) disk. Both

the metal and HE coupons are 50.8 mm in diameter. A point detonator is glued to

the center of the HE disc in order to perform single point ignition symmetrically.

Note that all of the components of the experiment setup have a common axis of

symmetry for consistent data analysis. During an experiment a VISAR probe, lo-

cated on the axis above the metal sample, transmits a laser beam, and the velocity

of the top surface of the metal is inferred from the light reflected from the coupon.

The time series of the velocity measured throughout an experiment constitutes the

VISAR velocimetry. Note that there are other types of data obtained during each

experiment,11 this paper is devoted to the analysis of VISAR velocimetry data.

There are two parameters that vary between different experiments: the metal

type of the sample and the thickness of the coupon. By changing the thickness of the

metal coupon and the type of metal in the initial setup of an experiment, researchers

attempt to see the changes in physical processes across the set of experiments. Only

the experiments on tin samples are described in this paper.
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Fig. 1. Schematic representation of the experiment setup.

3.2. VISAR data

A Velocity Interferometer System for Any Reflector (VISAR) is a system designed

to measure the Doppler shift of a laser beam reflected from the moving surface under

consideration so as to capture changes of the velocity of the surface. The VISAR

system is able to detect very small velocity changes (a few meters per second when

the velocity could be more than a thousand meters per second). Moreover, it is able

to measure even the velocity changes of a diffusely reflecting surface.

A VISAR system consists of lasers, optical elements, detectors, and other com-

ponents as shown in figure 1. The light is delivered from the laser via optical fiber

to the probe and is focussed in such a way that some of the light reflects from the

moving surface back to the probe. The reflected laser light is transmitted to the

interferometer. Note that since the reflected light is Doppler shifted, the interfer-

ometer extracts the velocity of the moving surface from the wavelength change of

the light.

This method, widely used in the experiments similar to the one described in

section 3.1, is reasonably reliable. For instance, the measurements obtained using a

VISAR system are in agreement with the results obtained by Makaruk et al.12 Since

the method of information extraction proposed by Makaruk et al. is independent of

VISAR, it additionally validates VISAR results.

Since the available data are the VISAR measurements that capture some char-

acteristics of the unknown function, and each data point is represented by several

features, the data are suitable for the application of supervised learning methods,

such as SVR. A velocity of each data point is a target value for SVR, whereas the

thickness and time are feature values. In other words, random variable T1 from (3)

represents velocity, and T2 and T3 stand for thickness and time (n = 3).

In figure 2 we describe the VISAR data set. It is important to note that the

data are significantly stretched along the time dimension. This happens because
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the whole dataset is comprised of time series corresponding to a set of measured

experiments. During each experiment, the VISAR readings were recorded every 2ns

for as long as 6000 time steps. However, for some experiments the VISAR system

finished recording useful information earlier than for other experiments. The data

were cut by the shortest sequence (1656 time steps), since it has been identified

experimentally that SVM performs better on the aligned data. On the other hand,

if we consider VISAR measurements across the thickness dimension, the data cover

the thicknesses starting from 6.35 mm up to 12.7 mm with 1.5875 mm increases. In

total, 5 time sequences of 1656 points comprise the data used by the SVM method.

Figure 2 presents the complete data set projected on the Time×V elocity plane.

The original data set is represented by dotted lines and is smoothed using a sliding

triangular window, which is depicted by solid lines. The amount of the time steps,

where each step is equal to 2ns, is shown on the abscissa.
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Fig. 2. The projection of the VISAR data set and its smoothed version.

In order to identify the best application of the SVM technology to the VISAR

data, we used k-fold cross-validation. The data are divided into k parts, out of which

k − 1 parts are used for training the learning machine, and the last part is used for

its validation. The process is repeated k times using each part of the partitioning

precisely once for validation.

4. Evaluation of Results

There are several factors affecting the quality of the resulting regression analysis.

The error of VISAR data as well as the errors occurring during the data prepro-
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cessing affect the accuracy of the reconstructed surface. It is generally agreed8,9,10

that a VISAR system measures the velocity values with an absolute accuracy of

3-5%. This is an approximate error calculated from differences between repeated

experiments. Although the number of repeated experiments was too small to allow

a more robust statistical analysis, this level of uncertainty is in the range of val-

ues generally agreed on by VISAR experimenters.8,9,10 Measurement error, together

with noise, transfers into the regression result. In addition, since the ignition time

(the start of the experiment) was different with different experiments, data have

to be time-aligned so as to make each time series start from the moment of the

detonation. This introduces another potential error into the regression.

The accuracy of the reconstructed surface is also affected by the specific features

of VISAR data. The length of each of the time series produced by the VISAR

system during different experiments always differs. We have observed that the SVM

performs better on the data combined from the time series of the same length than

from those of different length. Hence, the length of the data was aligned. In addition,

each data point of three elements (velocity, time, and thickness) has order 103, 10−6,

and 1. This is why it is important to scale the data to improve the performance of

the SVM.

Unfortunately, the application of SVR directly to the set of smoothed and aligned

data yields overfitted results. This overfit results from the data step in the time

direction being much smaller than the step in the other directions; hence for any

chosen data range there are more data points along the time axis than along the

thickness axis. The overfitting problem is solved by scaling the data in such a way

that the distance between two neighbor points along any axis is equal to 1.

Using nonlinear kernels achieves better performance when the dynamics of an

experiment are non-linear. It is known that Gaussian Radial Basis Function (RBF)

kernels perform well under general smoothness assumption,13 hence a Gaussian

RBF

k(x, y) = e−γ‖x−y‖2

was chosen as the kernel for the reconstruction. Additionally, it has been experi-

mentally determined that SVM techniques with simpler kernels, such as polynomial,

take longer to train and return non-satisfactory results.

The performance of the SVR with RBF kernel was directly affected by three

parameters, the radius γ of RBF, the regularization constant C, and the size ε of

the ε-tube which determines the accuracy of the regression (see section 2.1). k-fold

cross-validation was performed in order to determine the optimal parameter values

under which SVR produces the best approximation of the surface. An l2 error

is computed for each parameter instantiation after finishing the cross-validation.

Figure 3 demonstrates how the error changes depending on the values of the SVR

parameters.

It can be seen in figure 3 that the error increases as the radius γ goes up. The

error also increases when ε becomes bigger. One can also see that the change of
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Fig. 3. Error changes depending on different model parameters.

C affects the error the most when γ is the smallest, and the influence of C on the

error decreases as γ goes up, becoming insignificant when γ exceeds 0.3. At the same

time, given a small γ, parameter C affects the error more as ε decreases. The error

analysis suggests that when the tuple 〈γ,C, ε〉 is around 〈0.1, 0.75− 1.0, 0.001〉, the

total error is minimized. This error analysis produces a range of suboptimal values

for the parameters. Expert knowledge is used in order to identify the final model

that returns the most accurate velocity surface, shown in figure 4.

When this surface is found, it is possible to predict a velocity value for any

〈time, thickness〉 pair. Once the surface is accurate and stable enough, VISAR data

that deviate significantly from the surface can be identified consequently detect-

ing the “outlier” experiments. The surface provides significantly more information

about velocity changes across the thickness dimension than do the VISAR readings

alone. It can also provide velocity time series for an experiment in which only im-

agery data were measured, successfully improving the quality of the analysis for this

experiment, and, consequently increasing the understanding of the whole physical

system.

In this paper we used an implementation of SVM regression techniques called

SVM-light. For more information about implementation details see (Ref. 14).

5. Related Work

The SVM technology is used for both classification and regression tasks. Most

of the various applications of SVM are for classification, including handwrit-

ing recognition,15 face detection in images16 and lip tracking in video,17 speech

recognition18 and speech emotion detection,19 and various pattern recognition tasks

in bioinformatics.20,21 Some of the applications of SVM in physics include the work
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by Vannerem et al.22 testing SVM in the physics environment by using support

vector classifiers in the analysis of simulated high energy physics data, and by Cai

et al.23 presenting another example of the use of SVM techniques in the analysis of

physics data when the SVM is used to classify sonar signals.

In the case of regression, SVMs have been applied to financial forecasting,24

superresolution problems in image processing,25 benchmark time series prediction

tests,26 stream flow data estimation,27 and regularization of model inversion.28 Our

work is very different from financial and other time series forecasting24,26 using

SVMs for regression, because we essentially predict the data values between time

series as opposed to predicting the values at the next time steps. Research of Dibike

et al.27 who successfully applied SVMs for regression to the problem of stream flow

data estimation based on records of rainfall and other climatic data, is related to

our research on prediction of velocity data from time and thickness parameters.

On the other hand, our approach provides an outlier-experiment detection tool as

well as produces rich information suitable for integration into a data manifold of

the physical experiment. To our knowledge this is the first attempt to use support

vector regression for detection and data integration.

6. Conclusions and Future Work

In this paper we described the tool for data prediction along the sparse dimension

of the data set. Our method is based on support vector regression reconstructing a

data surface in the data space. We applied our method to VISAR velocity data ob-
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tained from high-energy physics experiments and successfully estimated the velocity

surface in Time × Thickness × V elocity data space. The optimization parameters

of the method are obtained using cross-validation and grid search and then further

validated by the domain expert. In case of velocity data prediction, our method

provides considerably more information about the velocity behavior as a function

of time and thickness than experimentally produced VISAR measurements alone.

This, in turn, significantly improves the scientific value of VISAR data in other

areas of analysis of physics experiments, such as in proton radiography imagery

analysis11,12 and in computational simulations.

Since it is based on SVM, our method does not require a vast amount of data for

producing good data estimations. This is very helpful when used in applied fields

where available data are limited due to the high cost and complexity of experiments.

In addition, we show that our method can be used for outlier experiment detection,

i.e., it can be used to distinguish between experiments with intrinsic underlying

governing process and experiments that significantly deviated due to disarrange-

ment of system’s parameters and other factors. Application in experimental physics

revealed this as an important advantage of our tool, since often a lot of domain

knowledge is needed to identify the outlier experiments.

There are several future directions of our work. One of these is to investigate the

possibility of using a custom kernel instead of the standard Gaussian. Intuitively,

an elliptical kernel that accounts for the high density of data in one direction and

sparsity in all other directions may improve the results of the method applied to

a unbalanced data set such as the velocity data considered in this paper. Investi-

gation of different techniques for the search of SVM free parameter values, such

as online learning algorithms for SVM parameter fitting, is another direction for

further research.

Finally, note that our method used for prediction produces a point estimate.

However, most of the time we wish to capture uncertainty in the prediction, hence

estimating the conditional distribution of the target values given feature values is

more attractive. There are a number of different extensions to the SVM technique

and hybrids of SVM with Bayesian methods, such as relevance vector machines and

Bayesian SVM, that use probabilistic approaches.29,30 Exploring these methods

could give significantly more information about the underlying data.
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